

A Primer on Railroad Signals

Dick Johannes March 13, 2010

The variety of signals seems endless

10/22/2010

Key historical events

- 1840: Ball signals: LTC Rolt
- 1841: Semaphore Charles Gregory
- 1851:Telegraph Chas Minot
- 1870: Track Circuit William Robinson
- 1871: Disk (Banjo) Signal Thomas Hall
- 1904: Color light signals William Churchill
- 1915: Position-light signals Arthur Rudd
- 1920: Searchlight Signals Hall Signal Co.
- 1924: Color Position signals Frank Patenall
- 1925: Tri-color (G type) signals GRS

Signals: 3 key questions

- 1. What degree of prototype accuracy can do you want to achieve?
- 2. What era and region are you modeling?
- 3. How much can you afford?

Two types of "regions"

10/22/2010

The Distinctions

Linear blocks

- Unsupervised (e.g. totally automated)
- Default is "clear" or "green"
- ABS (Automated Block Signaling)
- APS (Absolute Permissive Signaling)

Interlockings (Junctions & Sidings)

- Manually operated (e.g. human controlled)
- Default is "stop" or "red"
- Mechanical interlocks
- US&S panels
- Computerized CTC

ABS

ABS - weakness

10/22/2010

APB

The "OS" section

10/22/2010

Aspect Combinatorics

UPPER HEAD	LOWER HEAD ASPECT		
GREEN	GREEN	281	
GREEN	YELLOW	Not Used	
GREEN	RED	281	
YELLOW	GREEN	282	
YELLOW	YELLOW	284	
YELLOW	RED	285	
RED	GREEN	283	
RED	YELLOW	290	
RED	RED	291	

Aspects: NORAC*

Rule: 281 Name: Clear

Indication: Proceed not exceeding Normal Speed

Rule: 281c

Name: Limited Clear

Indication: Proceed at Limited Speed until entire train clears all interlocking or spring

switches

Rule: 281a

Name: Cab Speed Indication: Proceed in accordance with cab signal

indication

Rule: 282

Name: Approach Medium

Indication: Proceed

approaching the next signal at

Medium Speed

10/22/2010

Rule: 281b

Name: Approach Limited Indication: Proceed

approaching the next signal

at Limited Speed

Rule: 282a

Name: Advance Approach

Indication: Proceed prepared to

stop at the second signal.

Trains exceeding Limited Speed must reduce to Limited Speed as engine passed the signal

Aspects: NORAC* (cont)

Rule: 283

Name: Medium-Clear

Indication: Proceed at Medium Speed until entire train clears all interlocking or spring switches, then proceed at

Rule: 285

Name: Approach

Indication: Proceed prepared to stop at the next signal. Reduce to Medium Speed as engine

passes signal

Rule: 283a

Normal Speed

Name: Medium Approach

Medium

Indication: Proceed at Medium Speed until entire train clears all interlocking or spring switches, then approach next signal at Medium Speed

Rule: 286

Name: Medium Approach

Indication: Proceed prepared to stop at the next signal. Reduce to Medium Speed as soon as

signal is clearly visible

10/22/2010

Rule: 284

Name: Approach Slow Indication: Proceed

approaching the next signal

at Slow Speed

* 9th Edition, 2008

Rule: 287

Name: Slow Clear

Indication: Proceed at Slow Speed until entire train clears all interlocking or spring switches, then proceed at

Normal Speed

Aspects: NORAC* (cont)

Rule: 288

Name: Slow Approach Indication: Proceed at Slow Speed until entire train clears all interlocking or spring switches, then proceed at Medium Speed

Rule: 292

Name: Stop Signal Indication: Stop

Rule: 290

Name: Restricting

Indication: Proceed at Restricted Speed until entire train clears all interlocking or spring switches and leading wheels have 1) passed a more favorable signal or 2) entered non-signaled territory.

Rule: 296b

Name: Speed Limit Sign Indication: Proceed at speed posted on the Approach Speed Limit Sign until entire train has passed the Resume Speed Sign

Rule: 291

Name: Stop and Proceed Indication: Stop then proceed at Restricted Speed until leading wheels have 1) passed a more favorable signal or 2) entered non-signaled territory

Rule: 296c

Name: Resume Speed Sign Indication: Resume speed after

entire train has passed the

Resume Speed Sign

10/22/2010

* 9th Edition, 2008

14

The Modeler's Aspects

Rule: 281 Name: Clear

Indication: Proceed not exceeding Normal Speed

Rule: 292

Name: Stop Signal Indication: Stop

Rule: 285

Name: Approach

Indication: Proceed prepared to stop at the next signal. Reduce to Medium Speed as engine

passes signal

Rule: 290

Name: Restricting

Indication: Proceed at Restricted Speed until entire train clears all interlocking or spring switches and leading wheels have 1) passed a more favorable signal or

2) entered non-signaled territory.

10/22/2010

15

Create a linear schematic

Create a linear schematic

10/22/2010

Create a linear schematic

- Label blocks
- Label signals (Name east/west or north/south)
- What's CTC and what's block trackage between CTC

10/22/2010

Three key implementation questions

- What is the incoming information needed and how do I get it?
- How do I process the incoming information?
- How do I output the processed information?

Inputs

- Where are my trains?
- What direction are they moving?
- What train is it?
- How are my turnouts set?

Detection

Method	Isolated from Track Power	Reliability	Modification of Rolling Stock	Cost
Reed Switches	Yes	Fair	Yes	High
Optical	Yes	Fair	No	Low
Infrared	Yes	Good	No	High
Twin-T	No	Very Good	Yes	Medium
Induction	Yes	Very Good	Yes	Low

10/22/2010 21

Processing

Hardware

- Logic Rail
- Custom Signals (Atlas)
- Integrated Signal Systems
- Circuitron
- Dallee

Software

- JMRI
- CMRI
- Railroad & Co
- Signals by Spreadsheet

Outputs

- Strictly hardware
 - Gets complex and expensive with more complex track plans
 - Less flexible
- Hardware and Software
 - More flexible
 - Requires programming (somehow)

Screen shot from Dick Bronson's Hartford National Clinics

CATS

10/22/2010 25

The double saw-by

10/22/2010

Choices

- Ignore interlockings and just do ABS/APS
- Just do 1 or a few interlocks and ignore the "blocks" in between
- How long is a block?
 - 3 average train lengths?
 - 100 scale feet?
- How many aspects?
- Dark areas? How do you handle them?

Consider emulation

- Block or signal animators
 - Logic rail
 - Circuitron
- Just use Red/Green indications for R/N position at turnouts
- Will look pretty good and unless you are actually using them to operate may suffice

A passing siding

6 detectors \$ 78

10 Signals \$ 340

16 signal heads to illuminate \$ 199

2 tortoises and DCC decoders \$ 60

\$677

The Future?

Cab Signals

- •Leg up for the modern modeler?
- No fixed signals
- Location, direction & speed
- DCC throttles with LCDs
- BiDirectional DCC
- Could stop locomotive

References (Books)

- Railroad Signaling. Brian Soloman, MBI Publishing 2003.
- How to operate your model railroad. Bruce A Chubb, 2nd Edition, Kalmbach, 1977.
- Realistic Model Railroad Operation. Tony Koester. Kalmbach 2003.
- The Model Railroaders Guide to Junctions. Jeff Wilson. Kalmbach 2006.
- Railroader's Handbook Volume 2 Signaling Systems. Version 3 Dr. Bruce A. Chubb. 2010 available through CMRI website
- Railroad Operation and Railway Signaling. Edmund J Phillips.
 Simmons-Boardman 1942
- Compendium of Signals. Roger F.R Karl. Boynton, 1971.
- All About Signals. John Armstrong, Kalmbach, 1967.

References (Web Sites)

- Carsten Lundstens site: http://www.lundsten.dk/us_signaling/index.html
- Norac Simulator: http://raildata.railfan.net/java/DivRte/NORAC.htm
- Railroad Signals: http://www.railroadsignals.net/
- Railroad Signals of the US: http://www.railroadsignals.us/
- JMRI: http://jmri.sourceforge.net/
- CATS: http://home.comcast.net/~kb0oys/
- CMRI: http://www.jlcenterprises.net/
- Custom Signals: http://www.customsignals.com/
- ISS: http://www.integratedsignalsystems.com/
- Signals by Spreadsheet: http://www.signalsbyspreadsheet.com/
- Railroad Circuits: http://rr-cirkits.com/
- Logic Rail: http://www.logicrailtech.com/

References (Journals)

- Operating signals with software. Model Railroader, October 2007, page 50.
- The Computer/Model Railroad Interface A Case Study. Model Railroading, December 1999/January 2000, page 32.
- Using State-of-the-art Electronics to Enhance Operation. NMRA Bulletin, March 2007 page 38.
- Signaling made easier (3 part article). Model Railroader, January 2004, page 130.
- Automated Block Signaling using DCC Signal Driver Decoders. Model Railroading, July 2006, page 28.
- Absolute-Permissive Block Signals (3 part article). Model Railroader, November 1991 page 128.
- Where to place trackside signals on a model railroad. Model Railroader, October 2007, page 52.

THANK YOU

